In highly curved river bends, flow may separate at the inner bank to create a recirculation eddy with weak upstream flow. Very little is known about how recirculation eddies connect with the downstream flow or how the latter is affected by their presence. We investigate these questions using three-dimensional time-averaged computational fluid dynamics models of two natural bends with inner-bank separation. Test measurements of velocity in one bend agree well with the simulation. Common points in the two simulations are that (1) an outer-bank helix is only present in the upstream part of the bend, (2) maximum near-bank velocities are highest here rather than beyond the apex as in most bends, (3) reverse flow extends farther across the channel at the surface than the bed, and (4) flow within the recirculation eddy has a three-dimensional structure, linked with that in the outer-bank free stream. Substantial differences in detail between the two bends appear to be due to differences in upstream planform, manifested through the lateral distribution of inflow velocity.